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1. Introduction into the course MATHEMATICAL METHODS IN ELECTRIC ENGINEERING PROBLEMS COMPUTER SOLVING 
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The course aim is to bring together abstract mathematical description and particular electrical engineering problem to solve the latter.
Real objects such as the enterprise supply scheme are the objects of the mathematical model. 
The above-mentioned problems solving process itself is called mathematical modeling. 

1.1. Mathematical modeling 

The process and phenomena mathematical modeling in different fields of science and engineering     is one of the methods of getting new knowledge and technological tasks solving. 
To make mathematical modeling the investigator should, despite his speciality, be aware of the minimum set of computational mathematics and master the methods and computer programme implementation.  
The knowledge and skills are necessary to use the ready-made programme packages otherwise the calculations experiment planning and interpretation would be difficult. 

The aim of modeling is to obtain, process, present, and use the information about the objects which interact with themselves and the environment. 

The model as the mean of demonstration of properties and regularities of the object’s behavior. 

The model itself is the objective reality projection made from the certain point of view. Sometimes a set of the objective reality projections coming into conflict can be obtained depending on the goals. As a rule it’s typical of the complex systems in which each projection picks out the essential of the great number of inessential for a certain purpose.  

The existing or created object mathematical model, the quantitative analysis of which allows getting new knowledge, is its abstractive reflection. This is the mathematical modeling property.   

The facilities given to the computer users lead to the usage of the constantly modified packages such as MathCAD, MathLAB when the model quantitative analysis is made. More than that, the mathematical model universality allows to create such programming complexes as NASTRAN  or ANSYS in which the input information is entered not as the mathematical model but as the technical object design model. However, the method suitable for solving of many standard tasks is not the best one for the particular task and is often not applicable at all. As to the engineering, the non-standard tasks have to be solved because all the standard ones have been already solved or can be solved without any creative efforts. When new and complex tasks having no analogues are solved, the formal application of the universal packages and programming complexes might obtain the results which can not be interpreted and applied to the examined technical object. In such cases the mathematical model analysis should combine qualitative assessment, analytical methods, computer application and take into account that the calculation aim is understanding but not numbers. This entire means that a computer makes us free of many cares and obligations but the necessity to have mathematical knowledge and creative thinking. 
overheat control calculation example 
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1. Ш – iron-circuit.

2. Magnet winding.

3. Spring 
4. Armature 
5. Contactor 
Electromagnetic relay includes: 

1. Electromagnet calculation (current, operating voltage etc.) 
2. Magnetic system calculation.

3. Contact system calculation 
4. Thermal design (relay operation) 

The method of the thermal equivalent circuits is one of the types of the thermal design.  It is based on the thermal and electric processes analogy. The thermal equivalent circuit is the result of the method implication.  
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 is the analogy to the heat-resistance.
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Let’s divide the relay into two parts as it 

is shown in the fig. 2 
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The heat balance equation (1) 
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 – Heat power matrix;
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– time;
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 – temperature;
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 – agent conductivity matrix (the calculations are made in accordance with the Kirhgof law)
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 - the temperature increase matrix.

There are two types of tasks within the given equation :
1. Task solving in dynamics ( the equation 1 is used as a whole) 

2. Stable condition ( the equation 2 is G*T = P).

The mathematical model of the thermal process is the equation system of the matrix type reduced to (1)          

	
	Stable tasks 
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	Linear (don’t change their properties under different meanings of the right part )
	
	Nonlinear (backward to the linear ones)


 The theory of modeling is a section of science which studies methods of investigation of properties of objects of the originals based on their replacement by another object (model).  Many phenomena and processes of different nature are described by the analogous ratio (see the above example). That is why to analyze, solve and calculate mathematical model it is necessary to have the developed mathematical tool which covers all types of tasks in applied mathematics.
The posterior data – data known to make an experiment. 

Regression analysis - 
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- is the real data analysis;

Correlation analysis is the dependence of two processes connectability  

1.2. The mathematical model building peculiarities 
The mathematical modeling is a method of studying the real energy system through its replacement by more convenient model which preserves the considerable features of the original one. 
The model could be called isomorphic, equal by the form if there is complete elementwise adequacy between it and the real system. 

 The model is called homomorphic if there is adequacy only among the most considerable elements of the object and the model. 

The mathematical model consists of the following stages: 

1. The object studying and mathematical description making up. 

2. Building of the algorithm which models the object’s behaviour. 
3. Checking of the model and object’s adequacy. 
4. The model application ( getting new knowledge about the system) 
The modeling object studying and making up of its mathematical description lies in establishing the link among the process parametres, the initial and final conditions detection, forming of the process as the mathematical correspondence system. 

The mathematical description is based on fundamental equations of different branches of science, which characterize the investigated objects process dynamics and static.   

The following models are most popular:

Algoristic-type1)  models (include differential equations) 
Stochastic 2) modeling (takes into account the accidental nature of the processes, and the probability theory and mathematical statistic methods).  

If the posterior 3) data is not enough to clear up the mathematical model type and carry out the experiment the methods of multivariate statistic is used.  These are the methods of regression and correlation analysis.

 
The analysis regression method (for example we get the table and make the mathematical analysis for the relation 
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The analysis correlation method (shows the relation of the two processes to each other 
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	The model building principle 
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	Analytical 
(allows to obtain the sough quantity functional dependence. The most accurate models the accuracy of which is defined by initial data) 
	
	Imitation 


However, the more complicated the modeling object is, the more difficult it is to build the mathematical model.  It is because the analytical models are developed only for the classical configuration body (ball, cylinder, and plane).  Moreover, the bodies are homogeneous, that is, they consist of one and the same material.  As far as the engineering models and electrical engineering objects are not within the frames, the analytical modeling is practically not applied to the engineering calculations.  The engineering calculations themselves presume the presence of certain errors.    

 At the same time the imitation models which are the computer experiments with mathematical models which imitate the real objects behaviour are widely spread.  The characteristics of functioning of objects of modeling and the mathematical description type define the model continuous or discontinuous character.  The design aim defines the determinate or stochastic approach to the mathematical model building.   
 The mathematical modeling methods allow: 
· To exclude the necessity of manufacturing of huge physical objects (models) which require big sums of money; 
· To reduce the time necessary to define the characteristics ( especially if the model is computer calculated); 
· To study the modeling objects behaviour under different parameter meanings.  To analyze different elements application and get experimental t indices characteristics. 
1) Determinate-predefinite;

2) Stochastic –probabilistic; 
3) Posterior information –known data. 

There are two main advantages if to compare with the object physical modeling: 

· The computer experiments are quick; 
· The analysis of any situation of the mathematical model in any regime inaccessible for the physical modeling is intrinsic. 
1.3. The mathematical model description methods 

The mathematical model of the system or process structure looks like a functional system. 
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x, y – vectors of input and output coordinates;

z – external influence vector; 
t – time coordinate.

The functional presentation method depends on the modeling aim, the known information object function, and the initial data character.
1. The differential equation systems describe dynamic systems, transient processes in the system of energy supply in particular (the equipment switch on and off, short-circuit conditions, etc). The traditional task is to define the size and time of the short-circuit operation (transient condition). 
2. Algebraic equations describe the equipment operation fixed regimes.  The typical task is to find the line currents to choose cuts and input currents.
3. Nonlinear equations or a system of nonlinear equations can be both algebraic and differential. The only difference with the previous one is in fact that to solve them you should take into account the changeable parametres of the power system, that is nonlinear resistance, saturation of transformers, magnetic conductors and other equipment which allows to find the equipment parametres exact meaning. 
1.4. Deterministic (predefined) models.


The behaviour of the majority of technical systems could be characterized with the help of so called phase variables.  These are physical quantities such as: 
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- current, 
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- potential.

It is reasonable to display rather large elements within the objects of modeling.  These elements should be regarded as indivisible identities. The arrange equations which connect the different phase variables control the system functioning laws.  Generality of the description of the processes taking place in different technical systems allows to display several types of elements such as 
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 - energy dissipation elements;
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 - energy accumulation elements. 
The combination of this simple elements makes up the equivalent scheme of the technical system of any difficulty as well as its mathematical model. 
The table 3.1. given below explains the idea of the phase variables in different subsystems. 

The mathematical deterministic and continuous model as well as the analogous one for the technical object in general is the system of ordinary differential equations. 
Table 3.1. 

	Subsystem
	Phase variables 
	Elements 

	
	Current type 
	Potential 
	R
	C
	L

	Electric 
	Current (I)
	Voltage (U)
	R- active 
	C -capacitance 
	L inductance 

	Thermal 
	Heat flow 
	T temperature 
	Heat resistance 
	Ст    heat capacity
	No 

	Mechanical Advance 
	Force 
(Ф)-flow
	V – speed 
	F – friction force 
	F – elastic force 
	Mass 

	Hydraulic 
	Flow 
	P – pressure 
	Hydraulic resistance 
	Hydraulic capacitance 
	Hydraulic inductance 

	Mechanical Rotating 
	Phase variable 
	Angular speed 
	no
	Flexibility 
	Moment of inertia 



The matrix type of the heat model of the relay (first section, fig. 1.1), the heat balance equation for the equivalent circuit is presented as  
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The system like this with great number of equations could be solved only with the help of calculus with replacement of continuous argument by its discontinuous analogue.

With the phase variables collection at the  (к) step  integration is made through the solving the algebraic equations 
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system with 
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 unknowns.  
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There are overdetermined and underdetermined systems. 

Such systems solving is made by both direct and iteration methods.  The equation system 
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 is the combination of component, topological, and difference equations into one system.
The link between homogeneous and phase variables related to different system elements is presented by the topological equations.  The majority of physical systems equations are based on the equations of equilibrium and continuity (e.g. on the basis of the I and II Kirghof laws, laboratory work #3). 

1.5. Stochastic models

The following types of stochastic (probabilistic) modeling could be displayed under the description of the objects of electric engineering and automation.    

1. Stochastic modeling based on Monte Carlo method except of the mathematical modeling task is applied to the calculus tasks such as integral drawing, differential equations solving etc.
2.  Analytical probabilistic modeling which is applied to building of models which operate not with particular random sequence, but with their probabilistic (probability distribution laws) and spectral   (compactness spectrum or correlation function) characteristics. 
3. Correlation expresses the two processes link level. 
In general these models building is a complicated calculation task which doesn’t make it possible to use such advantages as the possibility to give accurate analytical characteristics of random processes, absence of the necessity to generate and process large choice of random numbers, adaptation to operative optimization.. 

1.6. The Monte Carlo Method 

There is a school in mathematics related to the Monte Carlo method. It deals with the application of random numbers necessary to solve different mathematical problems: interpolation, integral calculation, differential and integral equation solving, linear equation system solving, extremum search, process modeling etc. Nondeterministic method   advantages show themselves when big dimension tasks are solved and the application of traditional deterministic methods is difficult or impossible. The difference between simple and difficult, possible and impossible is moved away due to the computer development, but it always exists. The main disadvantage of the nondeterministic methods is their slow convergence which makes find a compromise between the result low accuracy and great computer time consumption.   
At first to get the random numbers the made up beforehand tables and physical sensors were used. The obvious disadvantage of the tables is their limited volume, and of the sensors – problems in their implementation, their slowness and petulance, the result non-reproductivity. That is why pseudorandom numbers generated by some programmes are used instead of purely random numbers. In such an approach the uninformed user faces the unpredictability: he observes the pseudorandom number “good” sequence for some time and is not bale to predict the sequence next  member, although all them are calculated by rather a simple formula. Before the random number sensor (table, physical, programming) is applied to solve a task it has to do different tests: uniformity (or correspondence to others set by the distribution law), independence, etc.  
The Monte Carlo method original locality is one of its advantages: it can search for one  constituent of the linear equation system solving without being interested in other components, or for the value of the function which is the differential equation solution in one point etc.   If, for example, the labourisness of the direct methods of calculation of some integrals with the growth of dimension of the space of the variables grows as кп (к — a number of steps on which the integration interval at each of the axes is divided), the labourisness of the Monte Carlo algorithm grows as kn/2. The main disadvantage of the Monte Carlo method is comparatively slow convergence, and   to get more or less reliable results a great number of repetitions are necessary. 
1.7. Main types of mathematical modeling tasks in electric engineering and automation 
1. Identification (the model clarification) of dynamic characteristic of linear elements under different signals description at their input and output. 
2. Application of the method of least squares to describe the data massive transmission characteristics at the system input and output.
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3. Investigation of the linear dynamic systems stability based on different(name) criteria application 
4. Analysis of automated control linear system quality. Optimal control effect definition. 
5. Investigation of nonlinear automatic and electric energy system based on approximate methods of solving nonlinear differential equations.   
6. Static imitation computer modeling of measurement devices and systems (histograming and correlation functions creation, etc.) 
7. Analytical probabilistic modeling of measurement information systems based on interrelated probabilistic (probability distribution law) and energy (spectrum density) capacities of the model.  
8. Definition of the meanings of speed, flow, sound wave or temperature of the closed area. 
9. Investigation of the automation devices by the method of the experiment planning.
10. Analysis of the signals distribution spectrum with the application of the Fourier transformations to recognize patterns and make signals digital processing. 
11. Analysis and evaluation of errors made by the measurement devices based on the method of interval analysis (the initial data are not absolute meanings, but the data interval. The electrical parametres max and  min are given).
12. Solving the automation tasks by design (CAD,CAM etc. programs).
2. solving the linear algebraic equations systems (laes) with taking into account the electric power tasks characteristics 
It is often necessary to solve LAES when the energy supply systems processes and regimes are calculated. It either solves the problem completely or make up its considerable part as far as calculations is concerned. As the equation system order is usually high which requires multiple solution under the changeability of the right parts, it is very important to use the most efficient solution methods with maximum usage of special electric engineering tasks..

2.1. All tasks solution methods general approach 

In common case the task is as follows: the 
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 equations should be found .
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where 
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 – the circuit passive elements 
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 – unknown element;
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The determinant should be zero unequal.  It is the necessary and sufficient term for the solution existence. 
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2.2. The LAES solution methods 
The LAES solution methods are as follows: 
· Direct.  They allow to get the accurate solution (the Kramer determinant method, the Gaussian method, the sweep method, the Jordan scheme, the matrix inversion method, and the matrix coefficients triangular factorization method).    

· Iteration (progressive approximation).  They are based on getting and improvement of progressive approximates for accurate solution.  They are efficient when there are a lot of zero elements ( the matrix is said to be sparse) and the systems order is high. 
1. The Gaussian method is efficient up to 
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2. Iteration methods are efficient up to 
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3. The Kramer method is less efficient for it to be applied for the problems computer solving as it requires maximum number of arithmetic. 
4. The Gaussian Hotelling method 
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 additional steps. 
The simple iterations method, the Zeidel method, the gradient (steepest descent) method, the Hotelling methods belong to the group of iteration methods. 

The result of equivalent transformations is as follows: 
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2.3. The Jordan method 
This method is very close to the Gaussian method.  That is why it is sometimes called the Gaussian-Jordan method.  However, it is more compact because of the equation system matrix coefficient equitype steps 
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.  As a result the meanings of unknowns could be equal to the meanings of the right parts of the corresponding equations. 
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The first step of the Jordan method completely coincides with the Gaussian method.  
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(1)

The first equation is divided by 
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 (right and left parts).  We obtain the elements with the index 1. 
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When the first step is fulfilled  the coefficient matrix first column is reduced to the required type ( the identity matrix first column) 
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At the second step the system obtained after first one is reduced in such a way that the coefficient matrix second column is the second column of the identity matrix. 
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The N-step calculations are of one and the same type and as far as the arbitrary k step is concerned they can be presented like this: 
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Like with the Gaussian method, the calculations are possible only when the leading element (diagonal 
[image: image53.wmf]kk
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, where 
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) differs from zero which can be done by the way of exchange of lines and columns for the nonsingular coefficient matrix. 
The resulting system will be like this: 
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The calculation compact scheme is peculiar for the method. It is accompanied by the calculations increase. The method application is quite difficult if one of the leading elements is equal to 0. 
This difficulty can be avoided if the equation system order is changed. It is always possible for the nonsingular coefficient matrix. The maximum accuracy is achieved when the leading element has the largest meaning. The line with the zero or little leading element should be changed into the line below with the element having the largest meaning in the same column. 

The calculation made in accordance with the Jordan scheme is programmed for the computer calculation as
                                                    for (k=1;k<=n;k++)

                                                   {


                                               B[k]=B[k]/A[k][k];


                                               for (i=1;i<=n;i++)


                                              {



                                           if ((i-k)!=0)




                                       B[i]=A[i][k]*B[k];


                                               if ((k-n)<0)



                                             k++;


                                               else exit(0);


                                                       for (j=k1;j<=n;j++)



                                          {



                                                    if((i-k)!=0)




                                              A[i][j]=A[i][j]-A[i][k]*A[k][j];



                                           }


                                               }

                                                    }

The pattern of the equation system solving is given below. 
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The comparison of the intensity of the Jordan method with the one of the Gaussian method. 


The comparison concerns the number of multiplication and division operations which are necessary to solve the N system of linear algebraic equations. 
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The intensity is presented in the table 
	N
	2
	3
	4
	5
	10
	25
	100

	Мж
	6
	18
	40
	75
	550
	8125
	505’ 000

	Мг
	6
	17
	36
	65
	430
	5825
	343’ 000
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As it drives from the obtained expression and the presented table the Jordan method, despite the large compactness, requires more calculation than the Gaussian method.  More than that, the difference becomes more obvious when the equation system order grows.  As far as there are hundreds of equations in the system when the electrical and power calculations are made, it is not quite reasonable to apply the Jordan method. 

2.4. The Gaussian method with the choice of the main element 
The task is analogous to the Jordan scheme.
The system 
[image: image66.wmf]b
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=

should be solved,

Where

А – nonsingular square matrix the determinant of which is not equal to 0 (
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 - the vectors of the right parts and unknowns.  


The method consists of three stages: 
1. The A matrix coefficient should be found in each column.  The lines should be presented in such a way that the maximum element should be on the main diagonal of the A matrix А (
[image: image69.wmf]ii

a

А), as the division is made by the elements located on the main diagonal.  The more the module element is, the less  the calculation error is.  This is the main element choice at this stage.
2. The reduction of the equation system obtained after the fulfillment of the item 1 actions.  The coefficient matrix is top triangular with singular elements on the main diagonal.  This item is called the Gaussian method forward course.   
3. Let’s calculate the meanings of the unknowns in the reciprocal sequence. That’s why it is called the backward course of the Gaussian method.    
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2.4.1. The forward course 
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There is no difference with the Jordan method at the first step 
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The general formula for the k-step 
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The forward course is described by the C++ in such a way: 
n1=n-1;

for (k=1;k<=n;k++)

{


B[k]=B[k]/A[k][k];


k1=k+1;


for(j=k1;j<=n;j++)


{



A[k][j]=A[k][j]/A[k][k];



B[j]=B[j]-A[j][k]*B[k];



for (i=k1;i<=n;i++)




A[i][j]=A[i][j]-A[i][k]*A[k][j];


}

}

B[n]=B[n]/A[n][n]; 

2.4.2. The backward course 
 The equation system obtained after the forward course calculation is quite easy to solve under the backward course calculation. 
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The Gaussian method backward course is described by the C++ in such a way 
                                                   for (i2=2;i2<=n;i2++)

                                                  {


                                                   i=n+1-i2;


                                                   j1=i+1;


                                                   for(i=j1;i<=n;i++)



                                               B[i]=B[i]-A[i][j]*B[j];

                                                   }

The number of multiplication and division operations necessary to solve the system of their N equations consists of forward and backward course. 
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Table.– Comparison with the different orders equation systems by the Gaussian method 
	
[image: image90.wmf]

 EMBED Equation.3  [image: image91.wmf]N


	3
	4
	5
	10
	25
	100

	
[image: image92.wmf]ПХ

М


	14
	30
	55
	385
	5’525
	338’350

	
[image: image93.wmf]ОХ

М


	3
	6
	10
	45
	300
	4’950

	
[image: image94.wmf]S

М


	17
	36
	65
	430
	5’825
	343’300


2.4.3. The pattern of the calculation made by Gaussian method 
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2.5. Matrix Inversion Method.

The method under discussion is formally the most obvious one to solve the LAES systems. 
In this case the mode system 
[image: image100.wmf]в
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 is reduced to the 
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mode, that is to 
define  the x  vector it is necessary to multiply the right parts matrix by coefficient inverse matrix. 
The classical method substance is as follows:

The initial matrix is transposed. The union matrix is found every element of which being equal to the transposed matrix minor determinant.

The union matrix is divided by the initial matrix determinant and the required inverse matrix is obtained. 
.
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The calculation of the N degree needs multiplication equal to that applied under the Gaussian method. The minors finding and the whole inverse matrix calculation require extremely much effort if to be compared with the traditional Gaussian method. 
That is why the classical method is not applied to calculations. Other methods based on matrix inversion are used.
2.5.1. The Matrix Inversion Method Based on b and x Columns Elements Interchange 
Substance: The right parts column elements and indeterminants of the equation system Ax =B are interchanged by N typical subsequent steps.

As a result the system Ax=В hence СВ=x, 
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As to the obtained equation system, three main trends of element recalculation based on similar forms could be singled out:
1) Diagonal coefficients.

2) The I-line non-diagonal elements.

3) The I-column non-diagonal elements.

4) All the other elements.


If the system is transformed after the 1-step, we obtain the following: 
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  - the column element;


[image: image114.wmf]j

i

ij

ij

a

a

a

a

1

)

1

(

1

)

1

(

-

=

 - all the other elements (i,j=2..,N)


The second step actions are analogous 
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For the arbitrary к step 
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(k,i,j=1..,N)    
[image: image124.wmf]k

j

i

¹

,


When the n steps are made we obtain the inverse matrix multiplied by the right parts column on the left Like in the Gaussian method the condition 
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To evaluate the laborious calculations it is possible to define the number of multiplication and division operations. But in this case it could be done without calculations with the application of the following arguments:  

1. Each expression for k contains one of the operations of multiplication or division. All A matrix elements are recalculated at every step that is
[image: image126.wmf])
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, n steps with these elements is calculated. Thus the inverse matrix calculation requires 
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multiplication and division operations. It’s less laborious than in the classical method as there are 
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(

5

n

multiplication and division operations there.

2. The (n) degree LAES  solution, which includes A matrix inversion and its multiplication by the right parts column, consists of
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 operations. 

The inverse matrix calculation made by the method of interchange of the columns of the right and left parts is programmed compactly in C++. It is done as follows: 


for (k=1;k<=n;k++)

{


A[k][k]=1/A[k][k];


for (i=1;i<=n;i++)


{



if((i-k)!=0)




A[i][k]=A[i][k]*A[k][k];



else goto 1;



for (j=1;j<=n;j++)



{




if((j-k)!=0)





A[i][j]=A[i][j]-A[j][k]*A[k][j];



}


}

}

for (j=1;j<=n;j++)

{


if ((j-k)!=0)



A[k][j]=-A[k][j]*A[k][k];

}
The matrix inversion method based calculation 
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2.6. Estimation of Comparative Computing Efficiency of the Matrix Inversion Method under the LAES Multiple Solution 

The LAES having equal matrix coefficient and changeable right parts column are often solved when electric engineering calculations are made. In this case the matrix inversion method is obviously preferable as all laborious calculations, inverse matrix in particular, are made only once, and for each right part column the column multiplies the matrix. 
Thus, if it is necessary to solve V equations, the matrix inversion method for this case is defined by 
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division and multiplication operations. 

In this case the Gaussian method is to be applied for all left part operations in full, and will have  
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These expressions collating leads to the conclusion that when 
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i. e. . V>3,  and  
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The matrix inversion method requires less calculation than the Gaussian method. However, it is too early to make a conclusion on the matrix inversion method rationality before the efficient solution methods based on the matrix elements factorization, that is its presentation as the special type factor matrix, are examined.   

2.7. The LAES Multiple Solution. The Coefficient Matrix Triangular Factorization Method
The given method substance lies in the fact that the A coefficient matrix, LAES of the type 
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is presented as the product of low 
[image: image140.wmf]D

-matrix by upper one. This presentation is known to be always possible for the nonsingular matrix A when one of the factors matrix diagonal elements are fixed. It is also the only one.

Let’s present
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L,H –  low and upper triangular matrix correspondingly 

          
           
 0


L=


H=    0


And under the presentation like this the system could be presented as two systems
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where the first one is solved by forward substitution in regard to (y), and the second one – in regard to а (x) – by back substitution. 

Triangular factorization is the L and H matrix splitting.

To determine the factorized L and H matrices the production of which is equal to A, we use the Gaussian method direct course matrix notation in the result of which the A matrix is given to the upper triangular.

The interpretation of the conversion substance is based on the forth degree matrix. It is done when generalization is necessary in case of N degree.

At the first step the coefficient initial matrix 
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is given to 
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This conversion could be made by multiplication of the A matrix 
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We obtain the 
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matrix at the second step
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At the third step 
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At the forth step 
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That is A matrix is given to the
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upper triangular matrix with the individual diagonal elements 
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It’s obvious that for the N degree system 
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It follows from it that 
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Let’s examine what is 
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If the Gaussian method forward course calculations, that is calculations on the expressions for n=4и к=1,2,3,4, given at the beginning of the lecture, are made, we obtain 
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instead of the A matrix.

Thus, the 
[image: image175.wmf]LH
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decomposition is obtained as a result of the Gaussian method forward course based on the expressions given at the beginning of the topic discussion. There exists a proof of the fact that the conclusion is true for the A matrix of any degree.

When A matrix is decomposed into L and H the system 
[image: image176.wmf]b
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is solved by forward substitution and y is found. The equation 
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is solved by back substitution. .


The solution of the N system linear equations by the method of the coefficient matrix triangular formalization requires as many multiplication and division operations as the Gaussian method does. But the presentation of the coefficient matrix as factorized 
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under solution of the V system equations with different right part columns makes this method more efficient if to compare it with the Gaussian method. 


Really, in this case the coefficient matrix factorization is made N times, and calculation of only y and x is repeated V times. The calculation is less laborious than under the method of coefficient matrix conversion made by columns and lines exchange.

Thus, the coefficient matrix factorization method based on the Gaussian method forward course calculation scheme is more preferable when several LAES having different right part columns are solved. This method is not worse than the Gaussian one if the LAES is solved once. But a slightly little compactness of the calculation scheme could cause the Gaussian method reduction. In common case of the LAES with constant A matrix and different right parts ( it can be under the power engineering calculations) multiple solution is achieved by the most preferable method of triangular factorization..


The triangular factorization method is programmed in C++ in the following way: 
n1=n-1;

for (k=1;k<=n1;k++)

{


k1=k+1;


for (j=k1;j<=n;j++)


{



A[k][j]=A[k][j]/A[k][k];



for (i=k1;i<=n;i++)



      A[i][j]=A[i][j]-A[i][k]*A[k][j];


}

}

B[1]=B[1]/A[1][1];

for (i=2;i<=n;i++)

{


n1=i-1;


for (j=1;j<=n1;j++) 


{



B[i]=B[i]-A[i][j]*B[j];


    B[i]=B[i]/A[i][i];


} 

}

for(i1=2;i1<=n;i1++)

{


i=n+1-i1;


j=i+1;


for (j=j1;j<=n;j++)



B[i]=B[i]-A[i][j]*B[j];

}

The discussed method could be exemplified by the following 
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- after the first and second steps 
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2.8. The Characteristics of Electric Systems LAES Solution 
The solution of the electric systems LAES could have the following characteristics: 

1. The system high degree

2. The coefficient matrix symmetric property
3. The matrix weak filling
4. It fulfils the term of the diagonal element zero inequality automatically
The nodal potentials method application.
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where 
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The equations under discussion are used so widely because of simplicity of nodes conductivity matrix forming. The scheme of calculation of tension reduction and arms current when 
[image: image199.wmf]D
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is known is simple too. Besides, see item 4 described above.
The nodes conductivity matrix has such characteristics as symmetric property, weak filling taking into account of which allows to reduce the calculation considerably when the node equations are solved..

2.9. Taking into Account the Node Conductivity Matrix 
This property of the node conductivity matrix is broken only when the scheme of replacement of electrical system of transformers with the transformation complex coefficients is taken into account. 

As far as the examining of the great number of the fixed modes is concerned the transformers are taken into account in the scheme of the electric systems when they are replaced either by elements including resistance and ideal transformers with the transformation real coefficients or by resistance of giving the replacement scheme to one tension step only. 

In this case the node conductivity matrix is symmetrical 

When the 
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LAES of symmetrical matrix (coefficients 
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) is solved in the process of calculation of the Gaussian method forward trace the diagonal block forward trace symmetric property is preserved, the block being placed on the right of and lower than pivotal element:
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It comes from the calculated expressions.
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After some steps the expression is reduced to 
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That is if the initial matrix has symmetric properties, the corresponding diagonal block 
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 will be symmetric with the step
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 at each step of the Gaussian method forward trace.

The mentioned property of the symmetry preservation allows making the calculation of the Gaussian method forward trace more rational. For example, only low 
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submatrix 
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 ( including the main diagonal) can operate if the upper 
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 submatrix is filled with the elements of leading  line for each step under 
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Let’s examine the calculation process of this type on the example of the system of the 4-th degree with introduction of only low
[image: image214.wmf]D

submatrix of the coefficient symmetrical matrix  into calculations. All the other unused elements will be marked as x . In this case the equations systems is as follows: 
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The diagonal block of low triangular submatrix for 
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is recalculated at the first step.
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It is done with the help of the following expressions 
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The second step represents the analogous calculations 

[image: image222.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

×

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

)

2

(

4

)

2

(

3

)

2

(

2

)

1

(

1

4

3

2

1

)

2

(

44

)

2

(

43

)

2

(

34

)

2

(

33

)

2

(

24

)

2

(

23

)

1

(

14

)

1

(

13

)

1

(

12

0

0

0

0

1

0

1

b

b

b

b

x

x

x

x

a

a

a

a

a

a

a

a

a



[image: image223.wmf])

1

(

22

)

1

(

2

)

2

(

1

a

b

b

=



[image: image224.wmf])

2

(

2

)

1

(

2

)

1

(

)

2

(

b

a

b

b

i

i

i

-

=



[image: image225.wmf])

1

(

22

)

1

(

2

)

2

(

2

a

a

a

i

j

=



[image: image226.wmf])

2

(

2

)

1

(

2

)

1

(

)

2

(

j

i

ij

ij

a

a

a

a

-

=


The third step calculations are analogous.
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The forth step:
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The retrace calculations are made as it was done earlier (see the Gaussian method) The Gaussian method forward trace calculation scheme works easily with the N equations general case with taking into account the coefficient matrix symmetric property. In this case 
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. It is presented like this: 
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The programme of implementation of the design equation of the Gaussian method forward trace with taking into account the symmetric property is practically the same as the one of the usual Gaussian method. The only difference is in indices sequence order in the expressions for 
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 at the  k-step with the finite meaning of the j cycle parametre 

The mentioned method characteristics are implemented in C++ like this:  
n1=n-1;

for (k=1;k<=n1;k++)

{


B[k]=B[k]/A[k][k];


k1=k+1;


for (i=k1;i<=n;i++)


{



A[k][i]=A[i][k]/A[k][k];



B[i]=B[i]-A[i][k]*B[k];



for (j=k1;j<=i;j++)




A[i][j]=A[i][j]-A[i][k]*A[k][j];


}

}

B[n]=B[n]/A[n][n];

It is obvious that the given formula calculations are resulted in matrix elements and factorized matrix without 0 and 1 obtained instead of the matrix elements. It allows to put down the matrix factorization 
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In the C++ operators the mentioned expressions to find the factorized matrix with taking into account the original symmetric property are as follows: 
n1=n-1;

for (k=1;k<=n1;k++)

{


k1=k+1;


for (i=k1;i<=n;i++)


{



A[k][i]=A[i][k]/A[k][k];



for (j=k1;j<=i;j++)




A[i][j]=A[i][j]-A[i][k]*A[k][j];


}

}
For the equation systems big degrees the calculations with taking into account the coefficient matrix symmetric property are considerably economical. It concerns the calculations of complex electric schemes where the symmetry should be taken into account.
2.10. Taking into Account the Node Conductivity Matrix Weak Filling 
The node conductivity matrix is known to be formed in the following way: each diagonal element equals to the sum of conductivity of the branches connected with the proper node of the scheme of electric system replacement. Every non-diagonal element is equal to the conductivity of the branches connecting the proper nodes taken with the opposite sighting. Thus for the node conductivity matrix composed for all nodes of the replacement scheme out of general number of elements 
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 will be of nonzero value with 
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 elements will be of zero value. The ratio 
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 is usual  for the electric systems replacement schemes. 
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 is a number of zero value elements of the node conductivity matrix. For big n the node conductivity matrix contains more zeros, that is, it is filled weakly. It’s preferably for the calculation algorithms with node conductivity to be organized in the way that allows operating only with the elements of nonzero value. 

When the node equations are solved with the help of the Gaussian method the node conductivity matrix is recalculated within the forward trace process. As a result new nonzero value elements appear in the matrix which means that its filling raises. It’s obvious that the more elements the line k of the matrix 
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 has, the bigger is the level raise at each k step.

As the A matrix different lines have different element number (different nodes have different branch number) the nodes numerating, which is the node tension order, defines the change of the matrix filling level in the Gaussian method forward trace calculation process. The numerating which leads to the minimum raise of the A  matrix filling is considered optimal. 

It is rather difficult to define which numerating scheme is optimal. Simple methods giving close to optimal solutions are applied. 

It is more preferable to use the node potentials method to make up the coefficient quadratic matrix:  
· Weak filling;
· Symmetric property;

· 
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One of the numerating methods consists in the fact that the nodes are numerated as the number of branches connected to it raises. Thus the equations are placed in the order of increasing. To preserve the matrix symmetric property the equations replacement should be accompanied by the corresponding unknown replacement. 

Let’s discuss the effect of the numeration on the example of four equations system: 




20
[image: image255.wmf]1

x

 - 5
[image: image256.wmf]2

x

 - 5
[image: image257.wmf]3

x

 -5
[image: image258.wmf]4

x

 =
[image: image259.wmf]20

-


            -5
[image: image260.wmf]1

x

+10
[image: image261.wmf]2

x

                    =
[image: image262.wmf]10

-


            -5
[image: image263.wmf]1

x

          +10
[image: image264.wmf]3

x

           =
[image: image265.wmf]30

-


-5
[image: image266.wmf]1

x

                     +5
[image: image267.wmf]4

x

 =   20

6 elements out 16 are of zero value in this system coefficient matrix. But the equations order is extremely irrational because of the first coming of the equation having maximum number of elements of nonzero value (the first node connections number is 3). It is followed by the equations having 2 nonzero coefficients each.    
As a result the third degree matrix, which is to be recalculated after the Gaussian method forward trace first step is made, becomes completely filled and there is no economy at the expense of the initial matrix zeros (see the Gaussian method). 

In accordance with the above mentioned numerating method it is enough to make the first equation being the last one and change the unknowns order, that is the initial system should be put down like this:  
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16 multiplication and division operations instead of 36 under the equations initial numerating were needed to calculate it. So the calculation was 2 times reduced. 

The high degree node equations have more considerable effect. That is why the algorithms and programmes to calculate the electric systems fixed modes are made up with taking into account the weak filling. 

Let’s mention the node conductivity matrix characteristics once again: 

1) the diagonal element is always of nonzero value, that is 
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;

2) 
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- is maximum in the given line;
3) in majority of cases the matrix has symmetric properties; 
4) matrix is sparse.

3. THE METHODS OF SOLVING OF FIXED MODES NONLINEAR ALGEBRAIC EQUATIONS SYSTEMS (NAES)




nonlinear element (transformer, arc furnace, magnetic elements)

The fixed mode equations are nonlinear because the capacity of power sources and consumers, but not current are initial data. Usually these are active and reactive capacities of consumers and the sources active modules. 

To make the explanation simple the special case will be examined. The active and reactive capacities of both consumers and power sources are given. In this case for the spontaneous architecture power system the scheme of which contains n nodes the fixed mode task is like this: to define the complex meaning, capacity of the n-1 nodes and the basic node tension for the given parametres of the scheme of replacement of the modeled system. 

The fixed mode equation is usually put down for the tension linear (interfacial) meanings and is presented as follows:  
1) the independent( all except for the balancing)  nodes capacity equation :
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2) node equations: 
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Here :
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- the nodes tension vector in regard to the balancing one;


[image: image288.wmf]n

- single column;


[image: image289.wmf]б

U

&
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It is defined from the (1) 
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we put it in the equation (2);we obtain:
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where

[image: image297.wmf]э

U

D

&

- the nodes tension diagonal matrix in regard to the balancing one;
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We obtain the final equation of the fixed mode in regard to the 
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or in the expanded form :
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The obtained system of nonlinear equations could be solved only by itaration methods. The general scheme contents is as follows: a certain 
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 initial approximant is given and the following 
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approximant is defined on the basis of the equation system calculated expression. The calculation process goes on till the given accuracy of the solution which is evaluated on the basis of the  two final iterations discrepancy of the meaning 
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or in accordance with the residual vector 
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To examine different iteration methods to calculate different electric systems the task could be simplified if to accept the fact that the derivatives, which are included into the system equations, are substantial:   
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This equation corresponds to the examining of the dc circuit.

 The reduction allows making the calculations simple and the comparison of the advantages and disadvantages of different methods become vivid. The quality characteristics of the methods are not changed. Let’s discuss the more simple denominations that were applied in the methods of LAES solution. The last equation is presented like this: 
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The concrete calculations are done for the system of 4 equations, which was discussed in the previous section with introduction of nonlinearity which in accordance with the last note is 
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3.1. The Simple Iteration Method 
The described above system iteration process is done like this:
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For the equation system under discussion it corresponds to the calculation expressions: 
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Let’s make calculations on these expressions with the approximant 
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. The given equation system calculations results are presented in the table. The calculations are stopped when 
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The nonlinear equation system iteration process reached the solution with the accuracy of 
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 is peculiar for the normal mode electric systems calculation. The changes of the right part of the equation are not important. This proves the fact that the equation nonlinearity is not considerably demonstrated. It was supported by the comparison calculations made for LAES obtained for the given LAES through the fixing of right parts on the meanings corresponding to the system solution.
The following table presents the results of calculation which looks like dependence of the iterations number necessary to obtain the solution of the k nonlinear equations on the given accuracy.:
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The results prove the fact that nonlinearity influences inessentially the speed of convergence of iteration process to the solution. The simple iteration method calculation amount evaluated upon the number of division and multiplication operations is defined by the following components: 

1. The reduction of the initial equation system to the calculation requires 
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2. The calculation of the succedent approximation also requires 
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 operations of multiplication and division. 
Thus when the solution is made by the simple iteration method with the help of 
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Practically absolute convergence, which is not dependent on chosen initial approximations, is the method advantage.
Slow convergence (if to compare it with other methods) could be considered its weak point. 

3.2. Zeidel Method
The iteration process of solution of nonlinear equations by Zeidel method is described by the following calculation scheme:  
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As far as the system under discussion is concerned it corresponds to the following calculation expressions: 
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The character of the simple iteration method appears at the 
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step to define the calculation expression 
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. The results  of the calculations made in accordance with the system under discussion are presented in the table : 
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The speed of convergence of the iteration process of Zeidel method is considerably higher than the simple iteration method (14 instead of 23). In this case, as under the simple iteration method, the equation nonlinearity makes little influence on the iteration process. It is seen from the table: 

	
[image: image363.wmf]e


	
[image: image364.wmf]3

10

-


	
[image: image365.wmf]4

10

-


	
[image: image366.wmf]5

10

-


	
[image: image367.wmf]6

10

-



	
[image: image368.wmf]k


	14
	16
	20
	23

	
[image: image369.wmf]л

k


	12
	16
	19
	22


As far as the iteration calculations defined by the number of division and multiplication operations both under the Zeidel method and simple iteration method are equal, Zeidel method, which provides the quicker convergence, is preferable under the fixed regime calculations. 

The transition to more general definition of Zeidel method is one of the ways to raise the convergence speed. Under this definition recalculation order and recalculated variables under the iteration process are defined not by the equation setting down, but the condition which is as follows: every time recalculate
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 is maximum, is recalculated each time. This method is called a full relaxation method..

3.3. Full Relaxation Method 
The results of this method calculation made for the mentioned above equation system are given in the table where 
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is the iteration recalculation method:
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The initial equations nonlinearity doesn’t practically influence the convergence speed. It is demonstrated in the given table : 
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As it is seen from the comparison of the results of calculations for the initial system of the equation under the Zeidel method and the method of full relaxation the convergence speed in both cases is practically equal.
The full relaxation method should be applied only if it provides quicker convergence than in case with the Zeidel method. The number of division and multiplication operations under the solution of the equation system of the N order at the iteration step, that is under the N variables recalculation, will be the same as for the Zeidel method for the initial system. The convergence implementation 
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itself leads to the algorithm complication and its slow down. 

The introduction of the speedup coefficient is another way to increase the speed of Zeidel method convergence. The following x level is accepted as the approximant 
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The table below presents the calculations for the initial system with 
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The following conclusion could be made: the choice of the coefficient 
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 could speed up the Zeidel method through the N raise of division and multiplication operations at each iteration. It won’t considerably influence the calculation amount. However, there are no general methods of choice of the rational meaning of 
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 coefficient. The LAES with the positive certain matrix of the q coefficients is known to be within the interval of 0-2.  The calculations show that the q rational meaning can differ greatly from 1. 

The introduction of the speed up coefficient is rational only under the mass calculations of the regimes of the given power system for which only the right part of the equations is different and meanings of 
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 have little changes. In this case the q meanings are defined by calculations of one regime, which provide the quickest convergence. The other regime calculations are made under this q meaning.   
3.4. Calculations based on Gaussian method 
The analysis of the solution based on the simple iteration method and Zeidel method shows that the equations nonlinearity doesn’t influence greatly the iteration process convergence speed. That is why the choice of the solution iteration method which is transformed into the direct method (or makes the solution with the help of one iteration) allows to speed up the convergence considerably if to be compared with Zeidel method. 

The method under discussion is as follows: 
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step which corresponds to the iteration process and is described as 
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For the LAES each iteration solution the method of the A matrix triangular factorization should be applied. As far as the matrix is changed within the iteration process the most capacious iteration procedure is made only once. The LAES with the triangular L and H are solved by forward and back substitution at each iteration. The number of multiplication and division operations for the method (let’s call it Gaussian-Zeidel method) could be defined as:
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Gaussian-Zeidel method is more efficient if 
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when the number of the operations required under Zeidel method is taken into account.

To evaluate the speed of convergence of Gaussian-Zeidel method it is necessary to examine the solution of the 4 equations system. 

The factorized matrix is as follows: 
 EMBED Equation.3  
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The table presents the results of iteration calculations 

	
[image: image409.wmf]k


	0
	1
	2
	3
	4
	5

	
[image: image410.wmf])

(

1

k

x


	0
	-1,81
	-1,991
	-1,999
	-2,000
	-2

	
[image: image411.wmf])

(

2

k

x


	0
	-3,61
	-3,97
	-3,997
	-4,000
	-4

	
[image: image412.wmf])

(

3

k

x


	0
	2,46
	1,974
	2,004
	2,000
	2

	
[image: image413.wmf])

(

4

k

x


	0
	-1,7
	-1,991
	-1,996
	-2,000
	-2

	
[image: image414.wmf]max

D


	-
	3,6
	0,486
	0,03
	0,004
	0,000


The convergence speed is higher than in Zeidel method which is to be expected (see the table data).. 
3.5. The comparison evaluation of convergence speed under Gaussian-Zeidel method and Zeidel method  
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The conclusion based on the table data could be as follows: the Gaussian –Zeidel method is much more efficient method ( three times as much) if to be compared with Zeidel method.   
3.6. Newton method 
The iteration process of solution of the nonlinear equations of the type 
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For the system under discussion 
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The initial iteration formula for the system under discussion is as follows: 
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The equation system is solved by Gausianm method in regard to 
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 approximant. The results of iteration calculations are given in the table:

3.7.  The Newton method iteration process 
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The iteration process converged within three iterations. 

The Newton method quadric convergence at the small neighbourhood of the solution point provides the weak dependence of the iteration number on the 
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 accuracy. The following table will demonstrate it :
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 The maximum absolute meaning 
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is an accurate solution. The condition of the calculation finishing reduces the iteration number under the same accuracy. 

The given condition application with the combination with Newton method procedure consists of the equitype calculation operations done at each iteration. 

The number of division and multiplication operations for the initial equation system is defined by  
1) Calculation of the right parts 
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 of division and multiplication operations;

2) The Jacobian matrix diagonal elements calculation -
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 division and multiplication operations;

3) The LAES solution made with the help of Gaussian method : 
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Thus, the total number of division and multiplication operations under equation system solution made by Newton method is as follows:
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where 
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- is the iterations number .
The comparison of calculations made by Newton and Gaussian-Zeidel methods demonstrates that Newton method, which requires the LAES solution at each iteration, is labour intensive. As far as  Gaussian –Zeidel method is concerned the most labour intensive part of calculations, that is matrix factorization, is done only once. 

The inequality 
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is the Gaussian-Zeidel method efficiency criterion. 
The inequality doesn’t speak in favour of Newton method. However, the method is widely used to calculate the fixed regimes because of quick and reliable convergence and the possibility of taking into account different forms giving of initial data for generator and loading units. 
Besides, Newton method allows the reduction of calculations at the iteration if to pass from the initial formula 
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 to the subsequent one. 

Thus, the Jacobian matrix is calculated only once when 
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It allows factorizing the matrix under discussion and solving 2 equations system with triangular L and H at each iteration. It would be impossible under the classical Newton method as the Jacobian was calculated at each  iteration.  
The modernized Newton method allows influencing only the convergence condition; the number of division and multiplication operations is reduced. Thus, the modernized Newton method is more efficient than Gaussian-Zeidel method as far as calculations is concerned under 
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It is true for the big 
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, which is a characteristic of power supply systems real tasks. If the modernized method is applied to the 4 equations system that was discussed earlier, the calculation will require 1 more operation if to compare it with the classical method. The power system fixed regime equation is put down as the power balance equation, which is as follows: 
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which allows initial data operating both as units full power and voltage power modules.  
The equations under discussion in this case will be like this: 
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The equation system solution made by Newton method is 
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In this case the Jacobian is calculated only once and is decayed into the components: 
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The modernized Newton method iteration formula for the particular equation system is like this: 
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The obtained system is solved relatively to 
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. The iteration calculation results are presented in the table. 

3.7.1. The course of the modernized Newton method iteration process based on capacity balance equations   
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As it comes from the calculation results the accuracy of the equations of the currents balance needs one more iteration. This and much calculation on the iteration doesn’t speak in favour of capacity balance equations. However, the equations are widely used in calculations of the fixed regimes because of the initial capacity data giving simplicity for loading 
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3.8. The LAES gradient (steepest descent) method
The method under discussion belongs to the complex iteration method, and has larger convergence than the simple iteration method. 

The initial equation looks like this: 
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The zeroth function minimum, which is a scalar product of the coefficient scalar matrix and transposed matrix, is found together with the residual vector. The solution has only the zeroth minimum. 
These are the given method calculation stages: 

1) The residual vector finding: 
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2) The additional 
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3) The iteration parameter calculation: 
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4) The following approximants finding :
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Let’s discuss the example for the method:.
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1) The residual vector :
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3.9. The steepest descent (gradients) method for nonlinear equations 
The actions are the same as in the previous case. The difference is that the  A coefficients matrix is replaced by the W Jacobian (the partial derivatives matrix for each x). 
The calculation process scheme.
1. The residual vector is found : 
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2. The additional vector is calculated: 
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3. The iteration parametres are calculated : 
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4. The following approximants: 
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4. The linear differential equations numerical solution 
The differential equations system describes the transition regimes of operation of the equipment for the real power supply systems.

These are the real tasks: 

1. The shirt circuit current calculation. 

2. The calculation of the time of the equipment, engines, electric ovens, and breakers activation.
3. The calculation of the regimes parametres (time 
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, voltage 
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, current 
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) under the transition from one regime of the electric equipment operation to the other. 

The following methods will be discussed in this chapter: 

- Euler;

· Euler -Cauchy; 
· Runge-Kutta (2,4,6 – degree);
· Runge-Kutta- Merson;
· Runge-Kutta- Felberg.

The last two methods are characterized by the step automatic choice and are basic for the solution of the differential equations system.
All the mentioned methods are based on the Euler method and can have its different interpretations having different calculation errors. 

4.1. The Euler method 

The task:  there is a differential equation 
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The function is continuously differentiated in the initial point an at the part where the solution is being searched.


As the right part of the equation is the continuous function it can be decomposed into the Tailor series in the area of 
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 . The integration interval should be divided into equal parts with 
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 being the integration step. 
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If only the first step of the Tailor series is taken 
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If 
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(difference 
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The method’s advantages are as follows: 
1) Simplicity in application;

2) Rather high convergence under rather small h meanings

Disadvantages:
1) Rather slow convergence which depends on the integration step; 
2) When the h step is increased the convergence speed is increased too, but the accuracy worsens
The disadvantages are caused by the accumulation of the errors made at each step and the mistakes of the second type which are presented at the following graph:



           With taking into account all above mentioned the method under discussion is applied to the high quality calculation and to find the initial approximants.  To get the accurate solution other methods with better accuracy and higher convergence are applied, although they depend greatly on the initial approximants.
As far as other methods is concerned, if the given initial approximant is not accurate the method of progressive approximation may not have convergence at all if to be compared with the Euler method where the convergence is always present. 
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4.2. The Euler Cauchy method 
The Euler-Cauchy method solves the problems of the Euler method partially as the solution is the simple average of two errors in the previous and given points. 

[image: image536.wmf](

)

1

1

2

1

+

+

¢

D

+

D

+

=

k

k

k

k

y

y

y

y



[image: image537.wmf])

,

(

k

k

k

y

x

hf

y

=

D



[image: image538.wmf])

,

(

1

1

+

+

+

¢

=

¢

D

k

h

k

k

y

x

hf

y



[image: image539.wmf])

,

(

1

k

k

k

k

y

x

hf

y

y

+

=

¢

+



[image: image540.wmf][

]

)

,

(

)

,

(

2

1

1

+

+

+

¢

+

+

=

k

h

k

k

k

k

k

y

x

f

y

x

f

h

y

y


The method under discussion is two times as accurate as the Euler method.  It has the same weak points. 
4.3. The Runge-Kutta method of the forth order 
It is one of the most popular and efficient methods for the differential equations solving.  There are different types of Runge-Kutta methods (of the second, forth, eighth etc. order).  The Runge-Kutta method of the forth order is the optimal one from the point of view of accuracy and iteration operations number.   
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The function is continuously differentiated at the given stage. 
The solution scheme is as follows: 
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The method’s characteristics: 
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- weighting coefficients ( the method is called because of their number) :
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The weighting coefficients (or weighting functions) which are before additions are found coming from the minimum of mistakes at each step.  It is the most accurate method of the discussed ones.  The only problem is the h step correct choice as if h is small the convergence is rather slow.  If h is large there might be no convergence of the solution.  The modernized methods such as Runge-Kutta –Merson and Runge-Kutta- Felberg solve the problem.  The idea of this method is as follows: some given beforehand step is chosen and made.  The steps are analyzed.  If there is the convergence of the solution, the step is enlarged and the procedure is repeated until the step is enough for the system to be diverged.  Then we turn one position back and the step is considered optimal.
5. Numerical integration 
integration methods classification 
As complicated differential and integral equations describe the real energy systems, there are no analytical solutions for them in the majority of cases.  These equations are solved by the numerical methods.  The solution of any equation of any degree could be found.  It is the main advantage of the computer application of the numerical methods.
The applied numerical integration methods could be grouped because of the sub-integral function description method. 

This is the brief characteristic of the most popular methods: 

1. The Newton-Kotes group 

These methods are based on polynomial approximation (conditional approximation) of sub-integral function.  This group methods differ from each other by the used polynomial degree which the number of units to calculate the sub-integral function depends on.  The methods algorithms are rather simple and it is easy to make the programming implementation of them. 

2. Spline methods 
These methods are based on sub-integral function approximation.  The methods differ by the chosen splines type. 
3.   The methods of the highest algebraic accuracy (the Gaussian-Christopher methods)  
The unequally distant units situated along the algorithm which provides for the minimum error of the integration for the most complicated functions are used.  The methods differ by the method of the units choice and are widely spread for integration including improper integrals.  However, because of the necessity to keep the constants and standardize the integration limits the method programmes require a little bit more memory capacity if to compare it with the Newton-Kotes method.  With these methods random number generators choose the units.  The answer is of probabilistic nature. 

4. The special methods group 

These methods the algorithms of which are developed with taking into account the known sub-integral functions allow to save time and reduce the integral calculation errors. Regardless of the chosen method it is necessary to calculate the integral approximate meaning and evaluate the error within the process of numerical integration.  When the number of the interval (a,b) decompositions is increased there is reduction of errors. It is done due to more accurate approximation of the sub-integral function.  However, the error will increase due to the computer adding of particular integrals and mistakes made under the numbers adjustment.  The last error of the meaning N is the prevailing one. 
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It should protect from the choice of extremely large number N (decomposition units) and lead to the necessity to develop the methods of evaluation of the R error of the chosen integration method. 
The task statement 
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All the numerical methods are based on the fact that the interval 
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 is decomposed into units at which the curve described by the sub-integral function 
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 is changed into some other curve for which the calculations are made with the usage of rather simple formulae, and than all the squares are added.  

5.1. Method of rectangles 
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5.2.  Method of trapezoids 
The accuracy of the method is much more higher then of the rectangles method. 
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5.3. The Simpson method 
The difference is in the fact that to raise the integration accuracy the functions approximation is made with the help of parabolas:


[image: image565.wmf](

)

2

Cx

Bx

A

x

y

+

+

=

;


[image: image566.wmf](

)

a

b

x

C

x

B

Ax

dx

x

y

b

a

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

ò

3

2

3

2





Let’s express the coefficients 
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 with the help of the coordinates 
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The system is solved relatively to 
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, and the obtained meanings are substituted into the integral formula. When the addition of the similar forms is made we obtain the Simpson formula which, for this particular case, is as follows:   


[image: image578.wmf](

)

(

)

(

)

2

1

0

2

1

0

4

3

4

6

y

y

y

h

y

y

y

a

b

dx

x

f

b

a

+

+

=

+

+

-

»

ò


For the general case the Simpson formula is as follows: 
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5.4. Estimation of the errors of the Newton- Kotes method 

Recommendations as to the integration step choice

The method errors are defined by the magnitude of the polynom member residual step.  The formula 
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 to estimate the error is the maximum meaning of the i derivative at the interval 
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For the rectangle method this error is as follows: 
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To provide the given accuracy of integration the algorithms with the automated step choice(ASC) are used. The following method is used : the integral meaning is calculated with the help of one of the earlier discussed methods with some initial step 
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. As a result 
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These calculations with the half step 
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are repeated:
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If it occurs that 
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the calculation process is over. In other case the further step division is made. 
The obtained approximate integral meaning can become more accurate with the application of the extrapolation approach (the method proposed by Richardson). 
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where
k= 1 in the rectangle method

k= 2 in the trapezoidal method

k= 4 in the Simpthon method 

5.5. The Monte-Carlo Multiple Integral Calculations 
The simplest formula to calculate a certain integral by the Monet Carlo method is as follows: 
[image: image594.jpg]
where the random numbers хi are uniformly distributed in the interval [а; b].
In multidimensional case the sphere of integration[image: image595.png], which is limited, is to be put into the n-dimensional rectangular parallelepiped ai,<Xi<bi To generate the random points х, which are uniformly distributed in this parallelepiped, the command 
x=a+(b-a).*rand(l,n)

can be used.
Here а=[а1,an], b=[b1,bп] and rand(1,n) — row bit vectors, operation . * — component wise row multiplication.
If to generate N random points х in this parallelepiped and mark the quantity of points xeg by ng , the “volume” of the sphere  m(G) =т(Пп) *ng/n, where the volume of the parallelepiped m(Пn) = (bi-ai) *   *(bn-an), and the integral 
[image: image596.jpg]
 Note
Using the Monet Carlo method it’s easy to find the integrals by one and the same sphere from some functions at once. For this it’s necessary to accumulate the sums Sfk (xi) for all required functions f k 
Here is an example. 
Task. Integration by the Monte Carlo method. 
[image: image597.jpg]
 the gravitation centre height over the plane  х3=о
[image: image598.jpg]
Let’s find the volume v and the h0 centre of gravity position of the homogeneous sphere segment using the Monte Carlo method. Its “southern polar” is considered to lie in the   хэ=о, plane, and the cutoff plane is parallel to it. Let’s mark the sphere radius г, and the segment height ь. Then the inequalities specifying the sphere segment х12 + х22 + х32 =< 2 r   х3, х3 =< h  its volume 
Here the integrals are taken according to the sphere specified by
The computing initial data is as follows: 
· The circle radius lying in the sphere segment base r0 = sqr(2rh - h2);
· The parallelepiped including the sphere segment and specified by the inequalities  al<xl<bl, а2<х2<b2, аЗ<хЗ<bЗ, где  al=a2=-rO, аЗ=0, b1=b2=r0, b3=h.
· The vectors a=[-ro,-ro,O], b=[ro,ro,h] could be formed with the help of the data and the sphere segment parameters could be calculated by MatLab:
function   [V,MhO,DhO]   = spherical_segment(r,h,N)
sumF=0;
sumDf=0;
NG=0;
rO=sqrt(h*(2*r-h));
a=[-rO,-rO,O] ;
b = [rO,   rO,h];
VP=4*rOA2*h;
for s=l:N
x=a+(b-a).*rand(size(a));
if   (х(1)^2+х(2)^2+х(3)А2<=2*r*х(3))   S   (x(3)<=h)
NG=NG+1;
fx=x(3) ;
sumF=sumF+fx;
sumDf=sumDf+fx^2; end end
V=VP*NG/N; MhO=sumF/NG; M2=sumDf/NG; DhO=M2-MhO^2;
To call the function and calculate exact values of vprec и норгес the following programme was applied:
% Spher_segm_tst rand('state',0); r=10; h=r; N=100;
[V,MhO,DhO]   = sphencal_segment (r,h,N) Vprec=pi*(r-h/3)*hA2 H0prec=h*(2*r-0.75*h)/(3*r-h) s3=3*sqrt(DhO/N)
The results of v=2320, Mh0=5.808i, s3=0.708 were obtained for the semi sphere (h=r) radius r=10 with n=1oo.  The latter means that the real height of the centre of gravity is in the range of [5.Ю0, 6.516], with the confidence probability being equal to 0.997. Compare the exact values of   vprec=2094.4, H0prec=6.25. It should be mentioned that the height of the centre of gravity identified with the help of the Monte Carlo method is accurate enough. Its calculation relative error is [image: image599.png] = 0, 07. The volume calculation accuracy is a bit lower. Its relative error is [image: image600.png] = 0, 11.
According to this it would not be difficult to specify any other characteristics of the sphere segment, the moment of inertia, for example. 
6.  Dependence interpolation 

The calculation of the meanings of the functions which are included into the model description is one of most important tasks in the process of mathematical calculation.   

As far as complicated models is concerned the calculation like this could be labour intensive even if it is made on computer. Much time is spent on function calculation when the programmes implementing the main methods of computational mathematics are done.  The functions used in mathematical models are given by both analytical and table method.  Besides, the latter is the main method as it is experimental, that is,  in majority of cases these are discrete values of the argument.  The problem of search for the argument meaning between measurements and behind the measurements interval rises.  
The problem under discussion is solved by the approximate exchange of the function 
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, which is not difficult to calculate under any meaning of the argument 
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 in the given interval of its changing. It is used not only for the approximation of the numerical meanings 
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,  but for the analytical computation under the model’s theoretical investigation. 
Approximation of the 
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 function by more simple function of 
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These functions proximity is achieved through the introduction of free parametres 
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 into the approximating function 
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The approximation functions are widely used in electric and power engineering tasks to describe physical parametres of the objects (transformers and other electric equipment) and to give characteristics of active and passive elements of the circuit, generator source etc.  The functions approximation is the basis the develop new methods and algorithms in computational mathematics. 
6.1. Interpolation 
Let function 
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be given by the table of meanings obtained by the experiment.  For example: 
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The computer normally presents the data as the massive.  The chosen meanings of the argument are called the table knots.  We suppose that knots are not equidistant in general case.  The finding of the approximate meanings of the table function under the arguments x which don’t coincide with those of the knot is the interpolations task.  If the meaning of the argument x is situated between the knots 
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, the finding of the approximate meaning of the function 
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 is called interpolation.  If the approximate fuction is calucalted beside the interval [
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], the process is called extrapolation. The origin of these terms is related to the Latin words inter –between, inside; and pole-knot; extra- out of the interval. 

In general the task is not formulated correctly, that is it has a lot of solutions.  But the maximum accurate solution is given below.







All the curves correspond to the table.  There is a traditional approach to solve this task with the help of the computer.  The maximum large base for different curves which were inserted as the function of 
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to give maximum accurate description of the table data is made up.  However, this approach doesn’t guarantee accuracy.  The interpolation formula of Lagrange (for the unequally spaced intervals with x) and the interpolation formula of Newton (for the equidistant intervals with x) give more accurate solution of the task.  The Newton interpolation formula is the special case of the Lagrange interpolation formula but it is less awkward. 

A wide range of numerical analysis tasks is solved with the help of interpolation: the functions differentiation and integration, 0 and functions extremum standing, differential equations solving etc. 
The possibility of such tasks solution is stipulated for rather a simple approximating function 
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Let’s introduce the approximating function 
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 a defined from the system of the investigated data.  There is a solution which looks like a multinomial of not higher than n degree. 
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which takes the table meanings in the points 
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when i=0,n is fulfilled..

6.2. The Lagrange interpolation formula 

Let’s find the coefficient of the above mentioned multinomial. The solution will include the system of equations which is obtained through the substitution of the x meanings and the table meanings y into the initial equation. When 
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However, the given system solution is, as a rule, related to the awkward calculations. That is why the interpolation multinomial 
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Taking into account the initial conditions and that 
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when 
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When the obtained coefficients are substituted into the initial formula for 
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The Lagrange formula 
Example.  The following measurements are experimentally obtained. The meaning of 
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и т.д.

6.3. The interpolation Newton formula 

Let’s discuss the interpolation special case when the step n between the neighbouring knots is constant.

Let’s introduce the meaning 
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- the first-order difference 
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- the second order difference 
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When the denotations are introduced we’ll find the interpolation multinomial of n-degree which takes the same meanings as 
 EMBED Equation.3  
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in the point of 
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 and further ones. 
Let’s find the first-degree multinomial which takes the corresponding meanings of y in the points of x. When these meanings are substituted into the interpolation Lagrange multinomial we obtain the following expression 
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- the first order multinomial 

The multinomial of higher orders ( for example, of the 2-nd order) are obtained in the analogous way  
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The interpolation Newton formula for the n-order is 
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There is the only solution for the interpolation task in the formulae of Lagrange and Newton.  That is why for the same meanings of 
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 the formulae of Lagrange and Newton are identical and differ only by the addends collection. 

The Newton formula is more convenient. It’s characteristic lies in the fact that when the new data are added to the table all the coefficients for the Lgarnge formula should be recalculated. As far as the Newton formula is concerned new addends are added and the old ones are not changed. 

6.4. The periodic functions harmonic analysis and synthesis 


The analysis under discussion defines the harmonic composition of the periodic functions . The time function 
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is true. 

The periodic functions harmonic analysis is the definition of the coefficients of the equation 
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w – the first harmonic circular frequency 

k – the harmonic number 
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There is no limitation as to the formula 
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, but there is one as to some number of harmonics m. The approximant harmonic coefficient 
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The Furier coefficients are defined by the following expressions 
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To calculate the integrals the numerical methods are used. For example, the rectangles method. When the integration interval [0,T] is broken into n equal parts we obtain the calculation formulae 
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The harmonic synthesis is getting of the periodic function through the adding of its harmonic components in accordance with the above mentioned formulae. 
6.5. The search of extreme value of the meanings by the method of golden section 
The method is used to define max and min meanings of the function at the given interval.  The extreme should be found in optimization task which always arise in engineering.  Example: To find the optimal section of the LEP cable. 
  

С – cost;

П – losses;
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The problem definition.

1. The objective functions the extreme of which is searched for and the limits in the interval of which the solution is searched for. 
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There is no theory of optimization at present.  But there are optimization methods. The reason for which this or that method is used should be given. 

The golden section method.  The extreme of the function 
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 at the interval of [а,в] is searched for.  To define the extreme the given interval should not contain more than one max and  min.

The interval golden section is its division into two parts in such a way that the relation of the whole interval length to the length of its biggest part is equal to the relation of the biggest part to the least one.
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The point 
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 is the golden section of the interval 
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In accordance with all above mentioned the extreme [а,в] should be searched as 

1. The interval [а,в] is divided by the points 
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 and 
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 in accordance with the golden section rule. 
2. The function 
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3. If 
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, the left limit of the interval is changed with 
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4. The process is repeated from very beginning with taking into account new limits of the interval [а,в].

5. The iteration takes place until the uncertainty interval [а,в] is less than the given error 
[image: image717.wmf]e

.

6. When the iteration is over the point max or min can be clarified if the interval [а,в] is divided into two. 
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